(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
increase(Nil) → number42(Nil)
increase(Cons(x, xs)) → increase(Cons(Cons(Nil, Nil), Cons(x, xs)))
number42(x) → Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil))))))))))))))))))))))))))))))))))))))))))
goal(x) → increase(x)
Rewrite Strategy: INNERMOST
(1) InfiniteLowerBoundProof (EQUIVALENT transformation)
The loop following loop proves infinite runtime complexity:
The rewrite sequence
increase(Cons(x, xs)) →+ increase(Cons(Cons(Nil, Nil), Cons(x, xs)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [ ].
The result substitution is [x / Cons(Nil, Nil), xs / Cons(x, xs)].
(2) BOUNDS(INF, INF)